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Abstract

Research on human causal induction has shown that people have general prior assumptions

about causal strength and about how causes interact with the background. We propose that these

prior assumptions about the parameters of causal systems do not only manifest themselves in esti-

mations of causal strength or the selection of causes but also when deciding between alternative

causal structures. In three experiments, we requested subjects to choose which of two observable

variables was the cause and which the effect. We found strong evidence that learners have

interindividually variable but intraindividually stable priors about causal parameters that express a

preference for causal determinism (sufficiency or necessity; Experiment 1). These priors predict

which structure subjects preferentially select. The priors can be manipulated experimentally (Ex-

periment 2) and appear to be domain-general (Experiment 3). Heuristic strategies of structure

induction are suggested that can be viewed as simplified implementations of the priors.
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1. Introduction

Causal learning and reasoning are ubiquitous. Causal knowledge enables us to predict

future events, explain past events, and plan actions to achieve goals. Whereas early psy-

chological theories of causal reasoning tried to reduce causal relations to non-causal asso-

ciative, probabilistic, or logical links between cues and outcomes (for an overview, see

Waldmann & Hagmayer, 2013), more recent theories assume causal model representa-

tions in which causes are distinguished from effects (e.g., Gopnik et al., 2004; for an

overview, see Rottman & Hastie, 2014). The majority of work on causal learning has

been devoted to the question of how people infer causal strength based on contingency
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data (e.g., Cheng, 1997; Griffiths & Tenenbaum, 2005; see Perales & Shanks, 2007;

Hattori & Oaksford, 2007, for overviews) and how people select between competing can-

didate causes of an observed effect (i.e., causal attribution; see, e.g., Downing, Sternberg,

& Ross, 1985; Hewstone & Jaspars, 1987; Kelley, 1967; Mackie, 1974). In both cases,

however, the causal roles of the variables (i.e., causes vs. effects) were pre-specified by

the task instructions. In contrast, our focus here is on how people determine the causal

role of the involved variables, that is, which ones are causes and which ones are effects

(i.e., causal structure induction).

There has been a debate in psychology about how people infer causal structure. One

approach argues that learners combine non-statistical cues, such as interventions, temporal

order, or domain-specific prior knowledge to specify which variables serve as causes and

which ones as effects (see Fernbach & Sloman, 2009; Gopnik & Wellman, 2012; Lag-

nado, Waldmann, Hagmayer, & Sloman, 2007; Waldmann, 1996). According to this

approach, these cues suggest hypothetical causal structures while covariation information

is used to estimate the causal parameters, such as causal strength (e.g., the probability

that a cause brings about its effect) and base rate (e.g., the probability that an effect is

brought about by unobserved background causes).

In contrast, causal Bayes net theory (see Gopnik et al., 2004), originally developed as

a normative theory of how computer systems and experts should make causal inferences,

provides us with mechanisms for the induction of causal structures from covariation

information alone (Pearl, 2000; Spirtes, Glymour, & Scheines, 2000). Whereas research-

ers who claim that learners use non-statistical cues to causal structure are skeptical about

the capability of learners to induce structure from covariation information alone, Gopnik

et al. (2004) suggested that people are capable of inducing causal structure from statisti-

cal patterns, even when other cues (e.g., temporal order) are not available (see also Stey-

vers, Tenenbaum, Wagenmakers, & Blum, 2003; but see Gopnik & Wellman, 2012).

Gopnik et al. (2004) discussed two strategies of causal structure induction: In con-
straint-based learning, triples of variables are analyzed to assess patterns of conditional

dependencies that are constrained by the underlying causal structure. For example, com-

mon-cause structures with three variables imply that each pair of variables is correlated

but that the two effect variables are independent (i.e., uncorrelated) when conditionalized

on the states of their common cause. In a common-effect structure, by contrast, the alter-

native causes are assumed to be independent (unless there are additional causes affecting

both), but they become dependent conditional on their joint effect. An alternative to the

constraint-based approach are Bayesian algorithms that calculate the posterior probability

of the different candidate structures by combining the likelihood of the data given the

alternative structures with their prior probability (see Steyvers et al., 2003; see also

Meder, Mayrhofer, & Waldmann, 2014).

Both induction strategies use conditional and unconditional probability information in

the data to assess the likelihood of the competing structure hypotheses. Whereas both

approaches allow learners to decide whether a dataset is more likely to be generated by a

common-cause or a common-effect structure, common-cause structures cannot be discrim-

inated from causal chains, for example. These two causal structures entail the same
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conditional dependencies (i.e., they are Markov equivalent). Thus, additional cues are

required to discriminate between such Markov equivalent structures.

1.1. Empirical evidence for causal structure induction

In the past decade, causal structure induction has attracted more and more attention in

cognitive psychology. Steyvers et al. (2003) introduced the mind-reading alien paradigm

to test whether people are capable of inducing the causal structure underlying three vari-

ables based on covariation data only. They presented subjects with three aliens that had

particular thoughts from a small dictionary (e.g., “POR,” “TUS,” etc.). Some of the aliens

were mind readers and were therefore able to read the thoughts of other aliens (which led

to sharing their thoughts). Subjects were requested to decide which out of several causal

structures generated the presented thought configurations of the aliens. Overall, Steyvers

et al. observed above-chance but poor performance when only covariation information

was available.

Lagnado and Sloman (2004, 2006), who also studied structure induction, observed that

people tend to prefer temporal and interventional cues over contradicting covariational

information (see also McCormack, Frosch, Patrick, & Lagnado, 2015). Fernbach and Slo-

man (2009) consequently argued that structure learning is local and primarily driven by

temporal cues. They concluded that people “do not rely on covariation when learning the

structure of causal relations” (p. 678). White (2006) arrived at a similar conclusion after

showing that people are not capable of inducing causal structure from patterns of co-

occurrences. More recent research, however, has shown that humans can infer causal

structure when the causal system is deterministic and spontaneous occurrences of effects

are rare (Deverett & Kemp, 2012), or when the observed system shows dynamic regulari-

ties over time (Rottman & Keil, 2012; see also Rottman, Kominsky, & Keil, 2014, for

evidence regarding children).

1.2. Goals of the present research: The role of abstract prior beliefs in causal structure
induction

The presented theories of causal structure induction generally do not consider the pos-

sibility that learners might use abstract prior assumptions about the parameters of a causal

system when inducing causal structures. However, more recent research about causal

learning has shown that people have general assumptions about causal strength and about

how causes potentially interact with background causes. In this research, the causal roles

of the variables were pre-specified in the task instructions. For example, Lu, Yuille, Lilje-

holm, Cheng, and Holyoak (2008) argued that people’s estimation of causal strength is

best explained by a Bayesian model that incorporates the quantitative assumption that

each effect is either generated by a strong observable cause or by the background cause

(i.e., either high causal strength and low base rate of the effect, or low causal strength

and high base rate of the effect; i.e., strong and sparse prior). In a similar vein, Yeung

and Griffiths (2011, 2015) showed that people have a bias toward high causal strength
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(i.e., sufficiency). Thus, it appears that people tend to assume that causal relations are

(quasi)-deterministic (see also Goldvarg & Johnson-Laird, 2001; Griffiths & Tenenbaum,

2009; Lu et al., 2008; Schulz & Sommerville, 2006).

Similarly, research in causal attribution has shown that people prefer to select sufficient

causes rather than necessary causes when explaining an effect (Downing et al., 1985; see

also Hewstone & Jaspars, 1987) and weigh evidence regarding violations of sufficiency

stronger than evidence regarding violations of necessity (Schustack & Sternberg, 1981).

In philosophy, it has also been discussed whether causal attributions should be based on

sufficient conditions, necessary conditions, or more sophisticated variants, such as the

INUS condition (i.e., a cause is an Insufficient but Non-redundant part of a condition

which is itself Unnecessary but Sufficient for the effect’s occurrence; see Mackie, 1974).1

Our new idea is that abstract prior assumptions about the nature of causal relations

should not only manifest themselves in strength estimates or in the selection of actual

causes but also in the induction of causal structure. To test how different prior assump-

tions influence causal structure induction, we used the simplest possible causal network

with two observable variables, X and Y (see Fig 1. for an illustration). It is well-known

that the question whether X causes Y or Y causes X is not decidable when only contin-

gency data are available. Both graphs are Markov equivalent. For each parameterization

of Graph 1 (X?Y; see Fig. 1a), there exists a parameterization of Graph 2 (X Y; see

Fig. 1b) yielding the exact same likelihood for any given set of contingency data. With-

out any additional assumptions, a structure induction algorithm has to guess the underly-

ing structure. The goal of our research, therefore, is to investigate whether learners show

systematic stable preferences when selecting between alternative structures that may be

traced back to their prior assumptions about the causal system’s parameterization.

2. Experiment 1

The goal of Experiment 1 was to test whether learners employ abstract prior assump-

tions about a causal system’s parameterization in a simple two-variable structure induc-

tion task and whether there are interindividual differences regarding these prior

assumptions. We constructed different datasets in such a way that different priors make

different predictions regarding the competing underlying causal structures. This method

allowed us to cluster subjects who differed in their prior assumptions about the

Fig. 1. The two possible causal structures between two observable variables X and Y along with background

causes (BX, BY) that explain occurrences of the effects in the absence of the observable cause.
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relationship between cause and effect (see Section 2.1. below). We tested two determin-

ism priors: a sufficiency prior (i.e., preference for high causal strength) and a necessity

prior (i.e., preference for low base rate of effect).2

For the structure induction task, we adapted the mind-reading alien story introduced by

Steyvers et al. (2003). Steyvers and colleagues presented subjects with a scenario in

which three aliens thought of different distinct words from a small dictionary. Some of

these aliens were capable of reading the thoughts of the other aliens. Subjects’ task was

to identify the aliens capable of mind reading on the basis of data showing how thoughts

are distributed at a specific point in time across the three aliens. Since the thoughts of

mind readers depend upon the thoughts of the aliens whose thoughts are read, the

thoughts of the mind reader represent a causal effect of the thoughts of the alien whose

mind is read.3 Thus, this identification task is equivalent to structure induction.

In the present experiment, we presented subjects with two aliens, X and Y, either think-

ing of nothing or of the word POR. It was stated that either alien X was able to read the

POR-thoughts of alien Y, or alien Y was able to read the POR-thoughts of alien X and that

either alien also may think of POR on its own. The task was to identify the mind-reading

alien on the basis of information about thought configurations (i.e., datasets).

2.1. Method

2.1.1. Participants
Fifty students from the University of G€ottingen (37 female; 21.2 years old on average)

participated as part of a series of unrelated computer experiments in exchange for course

credit or €8/h.

2.1.2. Procedure and material
The experiment was conducted on desktop computers and consisted of an instruction,

an instruction test, and 16 test phases. In the instruction phase, subjects were presented

with a story about two aliens X and Y (called Gonz and Brxxx) that either thought of

nothing or of POR (indicated by a bubble containing either nothing or POR). It was sta-

ted that one of the two aliens was capable of reading the POR thoughts of the other alien,

that either alien could also think of POR on its own, and that the subject’s task was to

identify the mind reader. After reading the instruction, subjects were asked to answer a

few multiple-choice questions about the instructions and had to re-read the instruction

until they passed the comprehension test without any errors.

In each of the 16 test phases, we presented participants with 12 patterns (i.e., thought

configurations) each showing either alien thinking of POR or nothing (see Fig. 2, for an

example). The 12 patterns were separately presented on the computer screen in random

order one by one (self-paced). Both aliens and their thoughts appeared simultaneously

(i.e., no temporal cue was provided). After observing the 12 patterns of a set, subjects

were requested to decide whether Alien X or Alien Y was the mind reader (i.e., forced

choice). Then, subjects continued with the next test phase until all 16 pattern sets were

presented. (The pattern sets were randomly assigned to the test phases.)
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Table 1 shows the frequencies of the eight distinct pattern sets used in all experiments

(each was presented twice) along with the predictions of a Bayesian structure selection

procedure employing the two types of determinism priors.4 The sets were selected with

the goal that the cause-and-effect roles of the variables were counterbalanced for each

prior (subsets indicated by an “a” vs. “b”), ensuring that preferences for position (e.g., a

preference to assign the cause role to the left-hand side variable) do not influence the

assignment of subjects to clusters.

2.2. Results and discussion

Since sufficiency and necessity priors predict exactly opposite choices (see Table 1),

we recoded the selections of the subjects with respect to the prediction of the sufficiency

prior (i.e., 1 = predicted by sufficiency and, therefore, 0 = predicted by necessity). For

Fig. 2. An example of a thought configuration shown in Experiment 1 and 2.

Table 1

Pattern sets used in all three experiments, predictions of the different priors, and the selection rates

Set

Pattern Frequency Prediction

Data (% of “X?Y” Selections)

Exp 1

Exp 2

Condition

Exp 3

Domain

00 01 10 11 Suff Ness Suff Ness Biol Chem Phys

1a 7 4 0 1 X?Y X Y 74 98 55 56 54 54

1b 7 0 4 1 X Y X?Y 27 7 45 44 44 44

2a 6 5 0 1 X?Y X Y 78 95 62 54 54 60

2b 6 0 5 1 X Y X?Y 27 2 31 48 48 46

3a 1 5 0 6 X?Y X Y 63 93 52 54 52 56

3b 1 0 5 6 X Y X?Y 36 5 45 44 44 42

4a 1 4 0 7 X?Y X Y 64 93 55 56 46 58

4b 1 0 4 7 X Y X?Y 43 2 57 50 50 44

Note. The four “pattern frequency” columns show how often each pattern was shown within each of eight

pattern sets of size 12 (rows; “01,” for example, means that X = 0 and Y = 1, as in the example depicted in

Fig. 1). The “prediction” columns show which structure should be selected according to the respective prior

(Suff: sufficiency prior, Ness: necessity prior; for details see note 4). Each set was shown twice in Experi-

ments 1 and 2 and shown once in each domain in Experiment 3. The “data” columns show the percentage

of X→Y selections in the respective experiments.
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each subject, an average score was calculated that indicated how many of the 16 choices

corresponded to the predictions of a sufficiency prior. Then, each subject was assigned to

the cluster that minimized the difference between the subject’s average score and the pre-

diction of the respective prior. Because a structure selection procedure based on maxi-

mum likelihood (i.e., without any prior assumptions) would predict random guessing, we

additionally included a random-guesser cluster (i.e., with an expected average score of

0.5).5 Note that with our procedure the probability of a random guesser accidentally being

assigned to the sufficiency or necessity cluster, respectively, is only .011. Thus, in case of

random guessing we would only expect about one of our 50 subjects being falsely

assigned to the sufficiency or necessity cluster.

Using our clustering procedure, 27 of 50 subjects (54%) were assigned to the sufficiency

cluster, 7 subjects (14%) to the necessity cluster, and 13 subjects (26%) to the random-gues-

ser cluster. Three subjects (6%) could not uniquely be assigned by the procedure. For the suf-

ficiency and the necessity clusters, 92.4% and 92.0% of participants’ selections, respectively,

were consistent with the predictions of a Bayesian selection procedure with the respective

prior (see Table 1). These numbers indicate that participants’ responses were highly consis-

tent, which shows that people seem to use an intraindividually stable prior in the experiment.

In sum, the experiment demonstrates the role of priors in structure induction and shows

that biases differ between individuals. This demonstration goes beyond previous studies

that typically compare human data with Bayesian methods incorporating uninformative

priors. However, the evidence for the strong influence of different prior assumptions is

only correlational so far. To strengthen our case that differences in prior assumptions are

an important factor in structure induction, we experimentally manipulated subjects’ priors

in Experiment 2.

3. Experiment 2

To manipulate prior assumptions, we instructed subjects about how the causal relations

within the learning domain usually work. We used the same materials as in Experiment 1

but added a short description about the to-be-expected type of causal relation. We instructed

either high causal strength (i.e., that a cause is usually sufficient to bring about its effect) or

low base rate of effect (i.e., that a cause is usually necessary for the effect to occur).

3.1. Method

3.1.1. Participants
Forty students from the University of G€ottingen (27 female; 22.5 years old on average)

participated as in Experiment 1.

3.1.2. Procedure, materials, and design
The procedure, instruction, and pattern sets were identical to those used in Experiment

1 except for the manipulation of the prior assumptions in the instruction phase. In the suf-
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ficiency condition, subjects were told that mind readers mostly succeed in reading the

thoughts of the other alien (=high causal strength; i.e., sufficiency prior), whereas in the

necessity condition we instructed participants that mind readers only rarely think of POR

on their own (=low base rate of effects; i.e., necessity prior). The prior assumptions were

manipulated between subjects (2 9 20).

3.2. Results and discussion

Subjects’ choices were coded and averaged as in Experiment 1, such that the resulting

average score indicated how many of the choices corresponded to the predictions of a

sufficiency prior (see also Table 1). With respect to our experimental manipulation, we

expected higher average scores in the sufficiency condition compared to the necessity

condition.

In the sufficiency condition, 95.0% of the selections were consistent with a sufficiency

prior. In the necessity condition, only 53.4% of the selections were predicted by suffi-

ciency (hence 46.6% of the cases were consistent with a necessity prior). Thus, the

manipulation of the prior through initial instructions made a substantial difference, t
(38) = 3.98, p < .001. Nevertheless—although our manipulation proved successful—there

was a general tendency to assume sufficiency even in the necessity condition.

4. Experiment 3

In the previous experiments, we have shown how assumptions about sufficiency and

necessity guide the induction of causal structures in the rather artificial domain of

mind-reading aliens. We used this domain to minimize the influence of domain-specific

knowledge about causal mechanisms. However, it would be interesting to know whether

our findings generalize to other domains, and how stable the individual priors are

across domains. It may well be that the priors of people are domain-specific. For exam-

ple, they may have a strong sufficiency intuition for physical domains, but not for bio-

logical ones (see Saito & Shimazaki, 2013, for evidence suggesting this possibility).

Research in the categorization literature indicates that different domains may be associ-

ated with different assumptions about the underlying causal structure (see Wattenmaker,

1995). However, an alternative possibility is that people have intraindividually stable

abstract intuitions about the nature of causality that are relatively stable across domains.

People may, for instance, believe that causal relations generally tend to express suffi-

ciency or necessity (Yeung & Griffiths, 2015). These priors may of course be overrid-

den by specific knowledge about mechanisms but since we are going to present

variables that are not associated with prior knowledge of directionality, only abstract

intuitions can drive subjects’ judgments.

In the present experiment, we used the general method of Experiment 1 again but var-

ied the cover stories describing variables from the domains of biology, chemistry, and

physics. In each of these domains, we chose variables that do not suggest a specific cau-

8 R. Mayrhofer, M. R. Waldmann / Cognitive Science (2015)



sal direction. Our goal was to explore whether priors vary across domains or whether we

will see again intraindividual stability.

4.1. Method

4.1.1. Participants
Forty-eight students of the University of G€ottingen (33 female; 23.5 years old on aver-

age) participated in the same manner as in the previous experiments.

4.1.2. Procedure, materials, and design
The initial instructions described the general setting and procedure of the experiment.

Then subjects were presented with three consecutive experimental tasks that were essen-

tially three shortened versions of Experiment 1 adapted to three different domains. We

used the same eight pattern sets as in Experiment 1 (see Table 1), but now subjects only

saw each set once (instead of twice as in Experiments 1 and 2), resulting in eight struc-

ture judgments per task. The three experimental tasks only differed in their cover story

that either referred to the domain of biology, chemistry, or physics. The domains (i.e.,

tasks) were presented in random order.

In the biological domain task, subjects were asked to imagine being a biologist who

investigates specific kinds of bugs in eight different regions of the world (i.e., eight pat-

tern sets). It was mentioned that some bugs produce excrement that attracts other bugs.

The task was to figure out which of two bug species produces the excrement (i.e., cause),

and which bug species was attracted (i.e., effect), based on information about whether

bugs from the two different species are present, whether both species are absent, or

whether only one species is present in the region.

In the chemical domain task, subjects were asked to imagine being a chemist who

investigates specific kinds of chemical substances in eight different chemical labs. It was

pointed out that some substances initiate the synthesis and therefore the presence of other

substances. Again, subjects were asked to identify which of the two substances initiates

the synthesis of the other substance and, therefore, causes its presence. Again the learning

data provided information about the frequencies of the paired presence/absence of the

two substances.

In the physical domain task, subjects were told to imagine being a physicist who investi-

gates specific kinds of subatomic particles in eight different particle physics laboratories. It

was stated that there are kinds of particles that interact with neutrinos, thus creating other

kinds of particles in the laboratory. The task was to identify which of the two kinds of parti-

cles interacts with neutrinos and, therefore, causes the presence of the other particle, based

on contingency information about the presence and absence of the two kinds of particles.

4.2. Results and discussion

As in Experiment 1, we recoded subjects’ responses with respect to the predictions of

the sufficiency prior; then we averaged across choices for each domain separately (see
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Table 1). Subjects were clustered according to their average scores, resulting in 22 of 48

subjects (45.8%) being assigned to a stable-sufficiency cluster (i.e., using a sufficiency

prior across all domains), 16 (33.3%) to a stable-necessity cluster (i.e., using a necessity

prior across all domains), and 9 (18.8%) to an alternating cluster (i.e., subjects who

switched between necessity and sufficiency across domains). None of the subjects were

assigned to the random-guesser cluster. One subject could not be uniquely assigned to a

cluster using our procedure. Note that the probability of a random guesser accidentally

being assigned to the stable-sufficiency or stable-necessity cluster, respectively, is only

.00004 each; and the probability of accidentally being assigned to the alternating cluster

is only .00026.

Experiment 3 extends the findings of Experiments 1 and 2 to more realistic domains

and shows that the majority of subjects seems to use a stable determinism prior across

domains (i.e., either a sufficiency or a necessity prior) that does not appear to be sensitive

to abstract domain characteristics.

One important finding in Experiment 3 is that different domains do not seem to be

associated with different priors. Although it cannot be conclusively ruled out that this

finding is in part also due to subjects trying to be consistent across tasks, a more plausi-

ble explanation is that subjects have abstract intuitions about what it means to be causally

related, and bring to bear domain knowledge when specific mechanism knowledge is

available. Since the goal of our studies was to investigate the role of priors on structure

induction, a methodological requirement was to choose variables for which prior knowl-

edge was minimized.

There is one important difference between Experiment 3 and the other two studies,

however. In comparison to Experiments 1 and 2, a higher proportion of subjects were

associated with a necessity prior in Experiment 3 (see Table 1). Given that there were no

differences between domains in Experiment 3, the most plausible explanation of this

effect is that background assumptions about the causal mechanism underlying mind read-

ing differed from the more abstract characterization in Experiment 3. In Experiment 3,

we used a neutral description of the causal relation (e.g., “X causes the presence of Y”)

to equate the tasks as much as possible across domains. It may be that mentioning a

cause of the presence of the effect in the three cover stories led subjects to think that

there may be other causes of the presence of each variable. In contrast, in Experiments 1

and 2 we used a more concrete description of the causal mechanism which described the

causal relation as arising from a disposition of one of the causal participants (e.g., “Y is

able to read X’s mind”; see also Mayrhofer & Waldmann, 2015). This cover story might

have highlighted the sufficiency of the cause of the thoughts of the mind reader because

alternative causes of the thoughts of Y seem less plausible.

5. General discussion

Our experiments suggest that people enter the task of causal structure induction with

the strong bias that the underlying causal relations are deterministic and that causes are
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either sufficient or necessary for their effects. This holds true despite the fact that the

observable input is probabilistic (see also Goldvarg & Johnson-Laird, 2001; Griffiths &

Tenenbaum, 2009; Lu et al., 2008; Schulz & Sommerville, 2006, for related views). The

results of our experiments suggest that learners employ priors to select causal structures

in elemental causal induction tasks with Markov equivalent structures. These priors can

be altered through initial instructions (Experiment 2). A second important novel finding is

that in the absence of biasing instructions different participants vary with respect to the

priors they prefer (Experiments 1 and 3) and that the majority of subjects use these priors

stably across different domains (Experiment 3). An important finding is that for variables

that are not preferentially associated with the cause or effect role, biases seem primarily

to be driven by the characterization of the causal relation and intraindividual preferences.

We found a pre-dominance of sufficiency intuitions in the alien mind reader task, whereas

the sufficiency prior was less prevalent when a more abstract characterization of the cau-

sal relation was chosen (see also Saito & Shimazaki, 2013, for converging evidence sup-

porting this hypothesis).

An interesting direction for future research is to study the role of prior assumptions

in the induction of more complex causal models. One possibility to implement such an

a priori bias is to assign appropriate prior distributions to the parameters in a Bayesian

structure induction procedure (see Deverett & Kemp, 2012; Lu et al., 2008). One prob-

lem with this approach is that Bayesian procedures pose strong demands upon the rea-

soners’ statistical processing capacities. A simpler, more heuristic way to reconcile, for

instance, a sufficiency bias with probabilistic data is to assume that the generating cau-

sal model contains deterministic causal relations that may occasionally be broken due to

random disturbances, such as the presence of a hidden preventer or the absence of a

necessary enabler (i.e., quasi-determinism). Patterns in which the cause is present and

the effect is absent can be interpreted as largely inconsistent with the determinism

assumption and should, therefore, count as evidence against the existence of a causal

relation. Based on this assumption, Mayrhofer and Waldmann (2011) have proposed a

“broken link” heuristic as the basis of the induction of more complex causal structures

(e.g., common-cause vs. common-effect models). For example, if a case with one pre-

sent and one absent event is presented, a hypothetical model in which the present event

is assumed to be the cause would entail a broken link which should weaken this partic-

ular causal model hypothesis. According to the “broken link” heuristic, the causal struc-

ture is chosen for which the sum of the number of broken links is minimal. When

applying the “broken link” heuristic, models are selected that are maximally consistent

with a sufficiency bias. A corresponding heuristic for a necessity bias might be to pref-

erentially select structures that minimize the occurrence of unexplained effects (i.e.,

choose the model hypothesis that minimizes the number of cause-absent/effect-present

pairs).

Unlike Bayesian or constraint-based procedures, these heuristics only look at pairwise

relations between variables even with more complex models and do not need to consider

complex conditional dependency information (see Mayrhofer, Hagmayer, & Waldmann,

2010; Mayrhofer & Waldmann, 2015). Thus, an advantage of a heuristic implementation
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is that it allows for relatively simple processing strategies to induce causal structure.

Future research will have to test these hypotheses further—especially in more complex

scenarios (see also Deverett & Kemp, 2012; Mayrhofer & Waldmann, 2011).
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Notes

1. The focus in causal attribution research, however, is token-level or actual causa-

tion; that is, the question which cause brought about the effect in a particular

instance. Causal structure induction, by contrast, is concerned with type-level cau-

sal claims between generic variables (e.g., “smoking causes cancer”).

2. In addition, we tested the strength version of the strong-and-sparse prior (proposed

by Lu et al., 2008). Because this prior did not fit the data well, we do not present

the results here (see Mayrhofer & Waldmann, 2011, for more details). In the pre-

sent task, the structure version of the strong-and-sparse prior is dominated by its

sufficiency component, which leads, at least for this study, essentially to the same

predictions as a pure sufficiency prior.

3. One might argue that the task may be confusing because the mind reader, that is,

the causal agent, is the causal effect. However, Mayrhofer and Waldmann (2015,

Experiment 1) have shown that people can distinguish between agent–patient rela-
tions and causal dependency (which is of interest here). To simplify the task of

reporting the causal structure further, we asked subjects to identify the mind-read-

ing alien (i.e., the effect)—in contrast to Steyvers et al. (2003), who requested par-

ticipants to draw a causal arrow between the variables.

4. We calculated the posterior distribution over both structures for each set given (a)

a Beta(100, 1) prior over causal strength (i.e., a strong preference for high causal

strength, that is, sufficiency) and (b) a Beta(0, 100) prior over base rate of effect

(i.e., a strong preference for a low base rate of effect, that is, necessity) while the

priors of the remaining parameters were set to Beta(1, 1) distributions (i.e., flat pri-

ors). In each case, the posterior probability of the predicted structure (see Table 1)

was >.99.
5. Note that a subject who, for instance, always picked the right-hand-side alien as

the mind reader would also be classified as a random guesser since the pattern sets

were counterbalanced with respect to position.
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